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Final project
New visualization research or data analysis project

! Research: Pose problem, Implement creative solution
! Data analysis: Analyze dataset in depth & make a visual explainer

Deliverables
! Research: Implementation of solution
! Data analysis/explainer: Article with multiple interactive 

visualizations
! 6-8 page paper

Schedule
! Project proposal: Wed 2/19
! Design review and feedback: 3/9 and 3/11 
! Final presentation: 3/16 (7-9pm) Location: TBD
! Final code and writeup: 3/18 11:59pm

Grading
! Groups of up to 3 people, graded individually
! Clearly report responsibilities of each member 
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Network Layout
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Graphs and Trees
Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure
Connected graph with N-1 edges
Nodes as parents and children
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Spatial Layout
Primary concern – layout of nodes and edges

Often (but not always) goal is to depict structure
! Connectivity, path-following
! Network distance
! Clustering
! Ordering (e.g., hierarchy level)

8

Applications
Tournaments 
Organization Charts
Genealogy
Diagramming (e.g., Visio)
Biological Interactions (Genes, Proteins)
Computer Networks
Social Networks
Simulation and Modeling
Integrated Circuit Design
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Topics
Tree Layout
Network Layout

Sugiyama-Style Layout
Force-Directed Layout

Alternatives to Network Layout
Matrix Diagrams
Attribute-Drive Layout
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Tree Layout
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Tree Visualization
Indentation

! Linear list, indentation encodes depth

Node-Link diagrams
! Nodes connected by lines/curves

Enclosure diagrams
! Represent hierarchy by enclosure

Layering
! Layering and alignment

Tree layout is fast: O(n) or O(n log n), 
enabling real-time layout for interaction
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Indentation
Items along vertically spaced rows

Indentation shows parent/child 
relationships

Often used in interfaces
Breadth/depth contend for space

Often requires scrolling
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Single-Focus (Accordion) List

Separate breadth & depth in 2D
Focus on single path at a time
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Node-Link Diagrams
Nodes distributed in space, connected by lines
Use 2D space to break apart breadth and depth
Space used to communicate hierarchical orientation 

Typically towards authority or generality
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Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension
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Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension
Problem: 
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Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension
Problem: Exponential growth of breadth
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Reingold & Tilford’s Tidier Layout
Goal: maximize density and 
symmetry.

Originally for binary trees, 
extended by Walker to cover 
general case.

This extension was corrected by 
Buchheim et al. to achieve a 
linear time algorithm
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Reingold-Tilford Layout
Design concerns

Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don’t waste space)
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Reingold-Tilford Algorithm
Linear algorithm – starts with bottom-up (postorder) pass 
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

! Shift right as close as possible to left
! Computed efficiently by maintaining subtree contours

! “Shifts” in position saved for each node as visited
! Parent nodes are centered above their children

Top-down (preorder) pass for assignment of final positions
! Sum of initial layout and aggregated shifts
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm

43

Reingold-Tilford Algorithm

44



22

Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Reingold-Tilford Algorithm
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Radial Layout
Node-link diagram in polar coords

Radius encodes depth root at center

Angular sectors assigned to subtrees 
(recursive approach)

Reingold-Tilford approach can also be 
applied here
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Problems with Node-Link Diagrams

Scale
Tree breadth often grows exponentially
Even with tidier layout, quickly run out of space

Possible solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation
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Visualizing Large Hierarchies

………

Indented Layout Reingold-Tilford Layout
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MC Escher, Circle Limit IV
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Hyperbolic Layout
Layout in hyperbolic space, then 
project on to Euclidean plane

Why? Like tree breadth, the 
hyperbolic plane expands 
exponentially

Also computable in 3D, projected 
into a sphere
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Degree-of-Interest Trees [AVI 04]

Space-constrained, multi-focal tree layout
https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://observablehq.com/@d3/collapsible-tree
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Degree-of-Interest Trees

Cull “un-interesting” nodes on a per block basis until all blocks on a level fit 
within bounds

Center child blocks under parents
https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://observablehq.com/@d3/collapsible-tree
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https://www.youtube.com/watch%3Fv=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree
https://www.youtube.com/watch%3Fv=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree
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Enclosure Diagrams
Encode structure using spatial enclosure
Popularly known as TreeMaps

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read depth
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Circle Packing Layout
Nodes represented as sized 
circles

Nesting to show parent-child 
relationships

Problems: 
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Circle Packing Layout
Nodes represented as sized 
circles

Nesting to show parent-child 
relationships

Problems: 
Inefficient use of space
Parent size misleading
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Treemaps
Hierarchy visualization that emphasizes values of nodes via 
area encoding

Partition 2D space such that leaf nodes have sizes 
proportional to data values

First layout algorithms proposed by Shneiderman et al. in 
1990, with focus on showing file sizes on a hard drive
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http://www.cs.umd.edu/hcil/treemap-history/
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Slice & Dice layout: Alternate horizontal / vertical partitions.
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Wattenberg 1998

Squarifed layout: Try to produce square (1:1) aspect ratios
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Squarified Treemaps [Bruls 00]

Greedy optimization for objective of square rectangles
Slice/dice within siblings; alternate whenever ratio worsens

https://vega.github.io/vega/examples/treemap/
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Why Squares
Posited Benefits of 1:1 Aspect Ratios

1. Minimize perimeter, reducing border ink.

2. Easier to select with a mouse cursor.
Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
Seems intuitive, but is this true?
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https://vega.github.io/vega/examples/treemap/
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Error vs. Aspect Ratio [Kong 10]

1. Comparison of squares has higher error!

2. Squarify works because it fails to meet its objective?

Squares
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Treemaps vs. Bar Charts [Kong 10]

Height more perceptually effective than area

What if element count is high?
What about comparing groups of elements such as leaf 
values to internal node values?
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Treemaps vs. Bar Charts [Kong 10]

At low densities (< 4k elements), bar charts more accurate 
than treemaps for leaf-node comparisons.

At higher density, treemaps led to faster judgments. 

Treemaps better for group-level comparisons.

75

Cushion Treemaps [van Wijk 99]

Use shading to emphasize hierarchical structure
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Cascaded Treemaps [Lü 08]

Use 2.5D effect emphasize hierarchical structure
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Voronoi Treemaps [Balzer 05]

Treemaps with arbitrary 
polygonal shape and 
boundary

Uses iterative, eighted
Voronoi tessellations to 
achieve cells with value-
proportional areas
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Iterative Voronoi Tesselations [Jason Davies]
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Signify tree structure using
Layering
Adjacency
Alignment

Involves recursive sub-division of space 
Can apply the same set of approaches as in node-link 

layout

Layered Diagrams
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Icicle and Sunburst Trees

Higher-level nodes get a larger layer area, whether 
that is horizontal or angular extent
Child levels are layered, constrained to parent’s extent

81

Layered Tree Drawing
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Node-Link Graph Layout
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Spanning Tree Layout
Many graphs are tree-like or have useful 
spanning trees

Websites, Social Networks

Use tree layout on spanning tree of graph
Trees created by BFS / DFS
Min/max spanning trees

Fast tree layouts allow graph layouts to be 
recalculated at interactive rates

Heuristics may further improve layout
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Spanning tree layout may result in arbitrary parent node
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Sugiyama-style graph layout

Evolution of the UNIX 
operating system

Hierarchical layering 
based on descent
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Sugiyama-style graph layout

Reverse some edges to remove cycles
Assign nodes to hierarchy layers à Longest path layering

Create dummy nodes to “fill in” missing layers
Arrange nodes within layer, minimize edge crossings

Route edges – layout splines if needed

Layer 1

Layer 2

Layer 3

Layer 4

…

…

89

Produces hierarchical layout

Sugiyama-style layout emphasizes hierarchy

However, cycles in the graph may mislead.
Long edges can impede perception of proximity.
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Hierarchical Edge Bundles
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Trees with Adjacency Relations
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Use radial tree layout for inner circle 
Mirror to outside
Replace inner tree with hierarchical edge bundles
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Bundle Edges along Hierarchy
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Increasing Edge Tension
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Configuring Edge Tension
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Flare Class Hierarchy 
& Dependency Graph

99



45

Force-Directed Layout
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Interactive Example: Configurable Force Layout
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Use the Force!
http://mbostock.github.io/d3/talk/20110921/

103

http://mbostock.github.io/d3/talk/20110921/
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d3.force
7,922 nodes
11,881 edges

[Kai Chang]
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Force-Directed Layout
Nodes = charged particles F = qi* qj / dij2

with air resistance F = -b * vi

Edges  = springs F = k * (L - dij)

D3’s force layout uses velocity Verlet integration
Assume uniform mass m and timestep Δt:
F = ma → F = a → F = Δv / Δt → F = Δv 
Forces simplify to velocity offsets!

Repeatedly calculate forces, update node positions
Naïve approach O(N2)
Speed up to O(N log N) using quadtree or k-d tree
Numerical integration of forces at each time step
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106
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Naive calculation of
forces at a point uses
sum of forces from
all other n-1 points.
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For fast approximate
calculation, we build
a spatial index (here,
a quadtree) and use
it to compare with
distant groups of
points instead.
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The Barnes-Hut θ
parameter controls
when to compare
with an aggregate
center of charge.

wquadnode / dij < θ ? 

θ = 0.5
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θ = 0.9
(default setting)
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θ = 1.5
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θ = 2.0
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