
1

Network Layout

Maneesh Agrawala

CS 448B: Visualization
Winter 2020

1

Announcements

3

2

Final project
New visualization research or data analysis project

! Research: Pose problem, Implement creative solution
! Data analysis: Analyze dataset in depth & make a visual explainer

Deliverables
! Research: Implementation of solution
! Data analysis/explainer: Article with multiple interactive

visualizations
! 6-8 page paper

Schedule
! Project proposal: Wed 2/19
! Design review and feedback: 3/9 and 3/11
! Final presentation: 3/16 (7-9pm) Location: TBD
! Final code and writeup: 3/18 11:59pm

Grading
! Groups of up to 3 people, graded individually
! Clearly report responsibilities of each member

4

Network Layout

5

3

6

Graphs and Trees
Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure
Connected graph with N-1 edges
Nodes as parents and children

7

4

Spatial Layout
Primary concern – layout of nodes and edges

Often (but not always) goal is to depict structure
! Connectivity, path-following
! Network distance
! Clustering
! Ordering (e.g., hierarchy level)

8

Applications
Tournaments
Organization Charts
Genealogy
Diagramming (e.g., Visio)
Biological Interactions (Genes, Proteins)
Computer Networks
Social Networks
Simulation and Modeling
Integrated Circuit Design

9

5

Topics
Tree Layout
Network Layout

Sugiyama-Style Layout
Force-Directed Layout

Alternatives to Network Layout
Matrix Diagrams
Attribute-Drive Layout

10

Tree Layout

11

6

Tree Visualization
Indentation

! Linear list, indentation encodes depth

Node-Link diagrams
! Nodes connected by lines/curves

Enclosure diagrams
! Represent hierarchy by enclosure

Layering
! Layering and alignment

Tree layout is fast: O(n) or O(n log n),
enabling real-time layout for interaction

12

Indentation
Items along vertically spaced rows

Indentation shows parent/child
relationships

Often used in interfaces
Breadth/depth contend for space

Often requires scrolling

13

7

Single-Focus (Accordion) List

Separate breadth & depth in 2D
Focus on single path at a time

14

Node-Link Diagrams
Nodes distributed in space, connected by lines
Use 2D space to break apart breadth and depth
Space used to communicate hierarchical orientation

Typically towards authority or generality

15

8

Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension

17

Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension
Problem:

18

9

Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension
Problem: Exponential growth of breadth

19

Reingold & Tilford’s Tidier Layout
Goal: maximize density and
symmetry.

Originally for binary trees,
extended by Walker to cover
general case.

This extension was corrected by
Buchheim et al. to achieve a
linear time algorithm

20

10

Reingold-Tilford Layout
Design concerns

Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don’t waste space)

21

Reingold-Tilford Algorithm
Linear algorithm – starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

! Shift right as close as possible to left
! Computed efficiently by maintaining subtree contours

! “Shifts” in position saved for each node as visited
! Parent nodes are centered above their children

Top-down (preorder) pass for assignment of final positions
! Sum of initial layout and aggregated shifts

22

11

Reingold-Tilford Algorithm

23

Reingold-Tilford Algorithm

24

12

Reingold-Tilford Algorithm

25

Reingold-Tilford Algorithm

26

13

Reingold-Tilford Algorithm

27

Reingold-Tilford Algorithm

28

14

Reingold-Tilford Algorithm

29

Reingold-Tilford Algorithm

30

15

Reingold-Tilford Algorithm

31

Reingold-Tilford Algorithm

32

16

Reingold-Tilford Algorithm

33

Reingold-Tilford Algorithm

34

17

Reingold-Tilford Algorithm

35

Reingold-Tilford Algorithm

36

18

Reingold-Tilford Algorithm

37

Reingold-Tilford Algorithm

38

19

Reingold-Tilford Algorithm

39

Reingold-Tilford Algorithm

40

20

Reingold-Tilford Algorithm

41

Reingold-Tilford Algorithm

42

21

Reingold-Tilford Algorithm

43

Reingold-Tilford Algorithm

44

22

Reingold-Tilford Algorithm

45

Reingold-Tilford Algorithm

46

23

Reingold-Tilford Algorithm

47

Reingold-Tilford Algorithm

48

24

Reingold-Tilford Algorithm

49

Reingold-Tilford Algorithm

50

25

Reingold-Tilford Algorithm

51

Radial Layout
Node-link diagram in polar coords

Radius encodes depth root at center

Angular sectors assigned to subtrees
(recursive approach)

Reingold-Tilford approach can also be
applied here

54

26

Problems with Node-Link Diagrams

Scale
Tree breadth often grows exponentially
Even with tidier layout, quickly run out of space

Possible solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation

57

Visualizing Large Hierarchies

………

Indented Layout Reingold-Tilford Layout

58

27

MC Escher, Circle Limit IV

59

Hyperbolic Layout
Layout in hyperbolic space, then
project on to Euclidean plane

Why? Like tree breadth, the
hyperbolic plane expands
exponentially

Also computable in 3D, projected
into a sphere

60

28

Degree-of-Interest Trees [AVI 04]

Space-constrained, multi-focal tree layout
https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://observablehq.com/@d3/collapsible-tree

61

Degree-of-Interest Trees

Cull “un-interesting” nodes on a per block basis until all blocks on a level fit
within bounds

Center child blocks under parents
https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://observablehq.com/@d3/collapsible-tree

62

https://www.youtube.com/watch%3Fv=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree
https://www.youtube.com/watch%3Fv=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree

29

Enclosure Diagrams
Encode structure using spatial enclosure
Popularly known as TreeMaps

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read depth

63

Circle Packing Layout
Nodes represented as sized
circles

Nesting to show parent-child
relationships

Problems:

64

30

Circle Packing Layout
Nodes represented as sized
circles

Nesting to show parent-child
relationships

Problems:
Inefficient use of space
Parent size misleading

65

Treemaps
Hierarchy visualization that emphasizes values of nodes via
area encoding

Partition 2D space such that leaf nodes have sizes
proportional to data values

First layout algorithms proposed by Shneiderman et al. in
1990, with focus on showing file sizes on a hard drive

67

http://www.cs.umd.edu/hcil/treemap-history/

31

Slice & Dice layout: Alternate horizontal / vertical partitions.

68

Wattenberg 1998

Squarifed layout: Try to produce square (1:1) aspect ratios

69

32

Squarified Treemaps [Bruls 00]

Greedy optimization for objective of square rectangles
Slice/dice within siblings; alternate whenever ratio worsens

https://vega.github.io/vega/examples/treemap/

70

Why Squares
Posited Benefits of 1:1 Aspect Ratios

1. Minimize perimeter, reducing border ink.

2. Easier to select with a mouse cursor.
Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
Seems intuitive, but is this true?

71

https://vega.github.io/vega/examples/treemap/

33

Error vs. Aspect Ratio [Kong 10]

1. Comparison of squares has higher error!

2. Squarify works because it fails to meet its objective?

Squares

72

Treemaps vs. Bar Charts [Kong 10]

Height more perceptually effective than area

What if element count is high?
What about comparing groups of elements such as leaf
values to internal node values?

74

34

Treemaps vs. Bar Charts [Kong 10]

At low densities (< 4k elements), bar charts more accurate
than treemaps for leaf-node comparisons.

At higher density, treemaps led to faster judgments.

Treemaps better for group-level comparisons.

75

Cushion Treemaps [van Wijk 99]

Use shading to emphasize hierarchical structure

76

35

Cascaded Treemaps [Lü 08]

Use 2.5D effect emphasize hierarchical structure

77

Voronoi Treemaps [Balzer 05]

Treemaps with arbitrary
polygonal shape and
boundary

Uses iterative, eighted
Voronoi tessellations to
achieve cells with value-
proportional areas

78

36

Iterative Voronoi Tesselations [Jason Davies]

79

Signify tree structure using
Layering
Adjacency
Alignment

Involves recursive sub-division of space
Can apply the same set of approaches as in node-link

layout

Layered Diagrams

80

37

Icicle and Sunburst Trees

Higher-level nodes get a larger layer area, whether
that is horizontal or angular extent
Child levels are layered, constrained to parent’s extent

81

Layered Tree Drawing

82

38

Node-Link Graph Layout

84

Spanning Tree Layout
Many graphs are tree-like or have useful
spanning trees

Websites, Social Networks

Use tree layout on spanning tree of graph
Trees created by BFS / DFS
Min/max spanning trees

Fast tree layouts allow graph layouts to be
recalculated at interactive rates

Heuristics may further improve layout

86

39

Spanning tree layout may result in arbitrary parent node

87

Sugiyama-style graph layout

Evolution of the UNIX
operating system

Hierarchical layering
based on descent

88

40

Sugiyama-style graph layout

Reverse some edges to remove cycles
Assign nodes to hierarchy layers à Longest path layering

Create dummy nodes to “fill in” missing layers
Arrange nodes within layer, minimize edge crossings

Route edges – layout splines if needed

Layer 1

Layer 2

Layer 3

Layer 4

…

…

89

Produces hierarchical layout

Sugiyama-style layout emphasizes hierarchy

However, cycles in the graph may mislead.
Long edges can impede perception of proximity.

90

41

Hierarchical Edge Bundles

92

Trees with Adjacency Relations

93

42

94

Use radial tree layout for inner circle
Mirror to outside
Replace inner tree with hierarchical edge bundles

95

43

Bundle Edges along Hierarchy

96

Increasing Edge Tension

97

44

Configuring Edge Tension

98

Flare Class Hierarchy
& Dependency Graph

99

45

Force-Directed Layout

100

Interactive Example: Configurable Force Layout

101

46

102

Use the Force!
http://mbostock.github.io/d3/talk/20110921/

103

http://mbostock.github.io/d3/talk/20110921/

47

d3.force
7,922 nodes
11,881 edges

[Kai Chang]

104

Force-Directed Layout
Nodes = charged particles F = qi* qj / dij2

with air resistance F = -b * vi

Edges = springs F = k * (L - dij)

D3’s force layout uses velocity Verlet integration
Assume uniform mass m and timestep Δt:
F = ma → F = a → F = Δv / Δt → F = Δv
Forces simplify to velocity offsets!

Repeatedly calculate forces, update node positions
Naïve approach O(N2)
Speed up to O(N log N) using quadtree or k-d tree
Numerical integration of forces at each time step

105

48

106

107

49

Naive calculation of
forces at a point uses
sum of forces from
all other n-1 points.

108

For fast approximate
calculation, we build
a spatial index (here,
a quadtree) and use
it to compare with
distant groups of
points instead.

109

50

The Barnes-Hut θ
parameter controls
when to compare
with an aggregate
center of charge.

wquadnode / dij < θ ?

θ = 0.5

110

θ = 0.9
(default setting)

111

51

θ = 1.5

112

θ = 2.0

113

